Analysis¶
pairplot(samples, points=None, limits=None, subset=None, upper='hist', lower=None, diag='hist', figsize=(10, 10), labels=None, ticks=None, offdiag=None, diag_kwargs=None, upper_kwargs=None, lower_kwargs=None, fig_kwargs=None, fig=None, axes=None, **kwargs)
¶
Plot samples in a 2D grid showing marginals and pairwise marginals.
Each of the diagonal plots can be interpreted as a 1D-marginal of the distribution that the samples were drawn from. Each upper-diagonal plot can be interpreted as a 2D-marginal of the distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
samples
|
Union[List[ndarray], List[Tensor], ndarray, Tensor]
|
Samples used to build the histogram. |
required |
points
|
Optional[Union[List[ndarray], List[Tensor], ndarray, Tensor]]
|
List of additional points to scatter. |
None
|
limits
|
Optional[Union[List, Tensor]]
|
Array containing the plot xlim for each parameter dimension. If None, just use the min and max of the passed samples |
None
|
subset
|
Optional[List[int]]
|
List containing the dimensions to plot. E.g. subset=[1,3] will plot plot only the 1st and 3rd dimension but will discard the 0th and 2nd (and, if they exist, the 4th, 5th and so on). |
None
|
upper
|
Optional[Union[List[Optional[UpperLiteral]], UpperLiteral]]
|
Plotting style for upper diagonal, {hist, scatter, contour, kde, None}. |
'hist'
|
lower
|
Optional[Union[List[Optional[LowerLiteral]], LowerLiteral]]
|
Plotting style for upper diagonal, {hist, scatter, contour, kde, None}. |
None
|
diag
|
Optional[Union[List[Optional[DiagLiteral]], DiagLiteral]]
|
Plotting style for diagonal, {hist, scatter, kde}. |
'hist'
|
figsize
|
Tuple
|
Size of the entire figure. |
(10, 10)
|
labels
|
Optional[List[str]]
|
List of strings specifying the names of the parameters. |
None
|
ticks
|
Optional[Union[List, Tensor]]
|
Position of the ticks. |
None
|
offdiag
|
Optional[Union[List[Optional[str]], str]]
|
deprecated, use upper instead. |
None
|
diag_kwargs
|
KwargsType[DiagOptions]
|
Additional arguments to adjust the diagonal plot,
see the source code in |
None
|
upper_kwargs
|
KwargsType[OffDiagOptions]
|
Additional arguments to adjust the upper diagonal plot,
see the source code in |
None
|
lower_kwargs
|
KwargsType[OffDiagOptions]
|
Additional arguments to adjust the lower diagonal plot,
see the source code in |
None
|
fig_kwargs
|
Optional[Union[Dict, FigOptions]]
|
Additional arguments to adjust the overall figure,
see the source code in |
None
|
fig
|
Optional[FigureBase]
|
matplotlib figure to plot on. |
None
|
axes
|
Optional[Axes]
|
matplotlib axes corresponding to fig. |
None
|
**kwargs
|
Optional[Any]
|
Additional arguments to adjust the plot (deprecated). |
{}
|
Returns: figure and axis of posterior distribution plot
Source code in sbi/analysis/plot.py
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
|
marginal_plot(samples, points=None, limits=None, subset=None, diag='hist', figsize=(10, 2), labels=None, ticks=None, diag_kwargs=None, fig_kwargs=None, fig=None, axes=None, **kwargs)
¶
Plot samples in a row showing 1D marginals of selected dimensions.
Each of the plots can be interpreted as a 1D-marginal of the distribution that the samples were drawn from.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
samples
|
Union[List[ndarray], List[Tensor], ndarray, Tensor]
|
Samples used to build the histogram. |
required |
points
|
Optional[Union[List[ndarray], List[Tensor], ndarray, Tensor]]
|
List of additional points to scatter. |
None
|
limits
|
Optional[Union[List, Tensor]]
|
Array containing the plot xlim for each parameter dimension. If None, just use the min and max of the passed samples |
None
|
subset
|
Optional[List[int]]
|
List containing the dimensions to plot. E.g. subset=[1,3] will plot plot only the 1st and 3rd dimension but will discard the 0th and 2nd (and, if they exist, the 4th, 5th and so on). |
None
|
diag
|
Optional[Union[List[Optional[str]], str]]
|
Plotting style for 1D marginals, {hist, kde cond, None}. |
'hist'
|
figsize
|
Optional[Tuple]
|
Size of the entire figure. |
(10, 2)
|
labels
|
Optional[List[str]]
|
List of strings specifying the names of the parameters. |
None
|
ticks
|
Optional[Union[List, Tensor]]
|
Position of the ticks. |
None
|
diag_kwargs
|
KwargsType[DiagOptions]
|
Additional arguments to adjust the diagonal plot,
see the source code in |
None
|
fig_kwargs
|
Optional[Union[Dict, FigOptions]]
|
Additional arguments to adjust the overall figure,
see the source code in |
None
|
fig
|
Optional[FigureBase]
|
matplotlib figure to plot on. |
None
|
axes
|
Optional[Axes]
|
matplotlib axes corresponding to fig. |
None
|
**kwargs
|
Optional[Any]
|
Additional arguments to adjust the plot (deprecated) |
{}
|
Returns: figure and axis of posterior distribution plot
Source code in sbi/analysis/plot.py
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
|
conditional_pairplot(density, condition, limits, points=None, subset=None, resolution=50, figsize=(10, 10), labels=None, ticks=None, fig=None, axes=None, **kwargs)
¶
Plot conditional distribution given all other parameters.
The conditionals can be interpreted as slices through the density
at a location
given by condition
.
For example:
Say we have a 3D density with parameters \(\theta_0\), \(\theta_1\), \(\theta_2\) and
a condition \(c\) passed by the user in the condition
argument.
For the plot of \(\theta_0\) on the diagonal, this will plot the conditional
\(p(\theta_0 | \theta_1=c[1], \theta_2=c[2])\). For the upper
diagonal of \(\theta_1\) and \(\theta_2\), it will plot
\(p(\theta_1, \theta_2 | \theta_0=c[0])\). All other diagonals and upper-diagonals
are built in the corresponding way.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
density
|
Any
|
Probability density with a |
required |
condition
|
Tensor
|
Condition that all but the one/two regarded parameters are fixed to. The condition should be of shape (1, dim_theta), i.e. it could e.g. be a sample from the posterior distribution. |
required |
limits
|
Union[List, Tensor]
|
Limits in between which each parameter will be evaluated. |
required |
points
|
Optional[Union[List[ndarray], List[Tensor], ndarray, Tensor]]
|
Additional points to scatter. |
None
|
subset
|
Optional[List[int]]
|
List containing the dimensions to plot. E.g. subset=[1,3] will plot plot only the 1st and 3rd dimension but will discard the 0th and 2nd (and, if they exist, the 4th, 5th and so on) |
None
|
resolution
|
int
|
Resolution of the grid at which we evaluate the |
50
|
figsize
|
Tuple
|
Size of the entire figure. |
(10, 10)
|
labels
|
Optional[List[str]]
|
List of strings specifying the names of the parameters. |
None
|
ticks
|
Optional[Union[List, Tensor]]
|
Position of the ticks. |
None
|
points_colors
|
Colors of the |
required | |
fig
|
matplotlib figure to plot on. |
None
|
|
axes
|
matplotlib axes corresponding to fig. |
None
|
|
**kwargs
|
Additional arguments to adjust the plot, e.g., |
{}
|
Returns: figure and axis of posterior distribution plot
Source code in sbi/analysis/plot.py
1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 |
|
conditional_corrcoeff(density, limits, condition, subset=None, resolution=50)
¶
Returns the conditional correlation matrix of a distribution.
To compute the conditional distribution, we condition all but two parameters to
values from condition
, and then compute the Pearson correlation
coefficient \(\rho\) between the remaining two parameters under the distribution
density
. We do so for any pair of parameters specified in subset
, thus
creating a matrix containing conditional correlations between any pair of
parameters.
If condition
is a batch of conditions, this function computes the conditional
correlation matrix for each one of them and returns the mean.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
density
|
Any
|
Probability density function with |
required |
limits
|
Tensor
|
Limits within which to evaluate the |
required |
condition
|
Tensor
|
Values to condition the |
required |
subset
|
Optional[List[int]]
|
Evaluate the conditional distribution only on a subset of dimensions.
If |
None
|
resolution
|
int
|
Number of grid points on which the conditional distribution is evaluated. A higher value increases the accuracy of the estimated correlation but also increases the computational cost. |
50
|
Returns: Average conditional correlation matrix of shape either (num_dim, num_dim)
or (len(subset), len(subset))
if subset
was specified.
Source code in sbi/analysis/conditional_density.py
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
|