Potentials¶
            posterior_estimator_based_potential(posterior_estimator, prior, x_o, enable_transform=True)
¶
    Returns the potential for posterior-based methods.
It also returns a transformation that can be used to transform the potential into unconstrained space.
The potential is the same as the log-probability of the posterior_estimator, but
it is set to \(-\inf\) outside of the prior bounds.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
posterior_estimator | 
            
                  ConditionalDensityEstimator
             | 
            
               The neural network modelling the posterior.  | 
            required | 
prior | 
            
                  Distribution
             | 
            
               The prior distribution.  | 
            required | 
x_o | 
            
                  Optional[Tensor]
             | 
            
               The observed data at which to evaluate the posterior.  | 
            required | 
enable_transform | 
            
                  bool
             | 
            
               Whether to transform parameters to unconstrained space.
When False, an identity transform will be returned for   | 
            
                  True
             | 
          
Returns:
| Type | Description | 
|---|---|
                  PosteriorBasedPotential
             | 
            
               The potential function and a transformation that maps  | 
          
                  TorchTransform
             | 
            
               to unconstrained space.  | 
          
Source code in sbi/inference/potentials/posterior_based_potential.py
              22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58  |  | 
            likelihood_estimator_based_potential(likelihood_estimator, prior, x_o, enable_transform=True)
¶
    Returns potential \(\log(p(x_o|\theta)p(\theta))\) for likelihood-based methods.
It also returns a transformation that can be used to transform the potential into unconstrained space.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
likelihood_estimator | 
            
                  ConditionalDensityEstimator
             | 
            
               The density estimator modelling the likelihood.  | 
            required | 
prior | 
            
                  Distribution
             | 
            
               The prior distribution.  | 
            required | 
x_o | 
            
                  Optional[Tensor]
             | 
            
               The observed data at which to evaluate the likelihood.  | 
            required | 
enable_transform | 
            
                  bool
             | 
            
               Whether to transform parameters to unconstrained space.
 When False, an identity transform will be returned for   | 
            
                  True
             | 
          
Returns:
| Type | Description | 
|---|---|
                  Callable
             | 
            
               The potential function \(p(x_o|\theta)p(\theta)\) and a transformation that maps  | 
          
                  TorchTransform
             | 
            
               to unconstrained space.  | 
          
Source code in sbi/inference/potentials/likelihood_based_potential.py
              23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55  |  | 
            ratio_estimator_based_potential(ratio_estimator, prior, x_o, enable_transform=True)
¶
    Returns the potential for ratio-based methods.
It also returns a transformation that can be used to transform the potential into unconstrained space.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
ratio_estimator | 
            
                  Module
             | 
            
               The neural network modelling likelihood-to-evidence ratio.  | 
            required | 
prior | 
            
                  Distribution
             | 
            
               The prior distribution.  | 
            required | 
x_o | 
            
                  Optional[Tensor]
             | 
            
               The observed data at which to evaluate the likelihood-to-evidence ratio.  | 
            required | 
enable_transform | 
            
                  bool
             | 
            
               Whether to transform parameters to unconstrained space.
When False, an identity transform will be returned for   | 
            
                  True
             | 
          
Returns:
| Type | Description | 
|---|---|
                  Callable
             | 
            
               The potential function and a transformation that maps  | 
          
                  TorchTransform
             | 
            
               to unconstrained space.  | 
          
Source code in sbi/inference/potentials/ratio_based_potential.py
              16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46  |  | 
            score_estimator_based_potential(score_estimator, prior, x_o, enable_transform=False)
¶
    Returns the potential function gradient for score estimators.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
score_estimator | 
            
                  ConditionalScoreEstimator
             | 
            
               The neural network modelling the score.  | 
            required | 
prior | 
            
                  Optional[Distribution]
             | 
            
               The prior distribution.  | 
            required | 
x_o | 
            
                  Optional[Tensor]
             | 
            
               The observed data at which to evaluate the score.  | 
            required | 
enable_transform | 
            
                  bool
             | 
            
               Whether to enable transforms. Not supported yet.  | 
            
                  False
             | 
          
Source code in sbi/inference/potentials/score_based_potential.py
              24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55  |  |